Sustainable development indicators (SDI) have the potential to turn the generic concept of sustainability into action. Though there are disagreements among those from different disciplines (and influenced by different political beliefs about the nature of the good society), these disciplines and international organizations have each offered measures or indicators of how to measure the concept.
While sustainability indicators, indices and reporting systems gained growing popularity in both the public and private sectors, their effectiveness in influencing actual policy and practices often remains limited.
Various ways of operationalizing or measuring sustainability have been developed. During the last 10 years there has been an expansion of interest in SDI systems, both in industrialized and, albeit to a lesser extent, in developing countries. SDIs are seen as useful in a wide range of settings, by a wide range of actors: international and intergovernmental bodies; national governments and government departments; economic sectors; administrators of geographic or ecological regions; communities; nongovernmental organizations; and the private sector.
SDI processes are underpinned and driven by the increasing need for improved quality and regularly produced information with better spatial and temporal resolution. Accompanying this need is the requirement, brought in part by the information revolution, to better differentiate between information that matters in any given policy context versus information that is of secondary importance or irrelevant.
A large and still growing number of attempts to create aggregate measures of various aspects of sustainability created a stable of indices that provide a more nuanced perspective on development than economic aggregates such as GDP. Some of the most prominent of these include the Human Development Index (HDI) of the United Nations Development Programme (UNDP); the Environmental Sustainability Index (ESI) and the pilot Environmental Performance Index (EPI) reported under the World Economic Forum(WEF); or the Genuine Progress Index (GPI) calculated at the national or sub-national level. Parallel to these initiatives, political interest in producing a green GDP that would take at least the cost of pollution and natural capital depletion into account has grown, even if implementation is held back by the reluctance of policymakers and statistical services arising mostly from a concern about conceptual and technical challenges.
At the heart of the debate over different indicators are not only different disciplinary approaches but also different views of development. Some indicators reflect the ideology of globalization and urbanization that seek to define and measure progress on whether different countries or cultures agree to accept industrial technologies in their eco-systems.[1] Other approaches, like those that start from international treaties on cultural rights of indigenous peoples to maintain traditional cultures, measure the ability of those cultures to maintain their traditions within their eco-systems at whatever level of productivity they choose.
The Lempert-Nguyen indicator, devised in 2008 for practitioners, starts with the standards for sustainable development that have been agreed on by the international community and then looks at whether the international organizations like UNDP and other development actors are applying these principles or not in their projects and in their work as a whole.[2]
In using sustainability indicators, it is important to distinguish between three types of sustainability that are often mentioned in international development: -- Sustainability of a culture (human system) within its resources and environment; -- Sustainability of a specific stream of benefits or productivity (usually just an economic measure); and—Sustainability of a particular institution or project without additional assistance (institutionalization of an input).
The following list is not exhaustive but contains the major points of view:
University of Maryland School of Public Policy professor and former Chief Economist for the World Bank Herman E. Daly (working from theory initially developed by Romanian economist Nicholas Georgescu-Roegen and laid out in his 1971 opus "The Entropy Law and the Economic Process") suggests the following three operational rules defining the condition of ecological (thermodynamic) sustainability:
Some commentators have argued that the "Daly Rules," being based on ecological theory and the Laws of Thermodynamics, should perhaps be considered implicit or foundational for the many other systems that are advocated, and are thus the most straightforward system for operationalization of the Bruntland Definition. In this view, the Bruntland Definition and the Daly Rules can be seen as complementary—Bruntland provides the ethical goal of non-depletion of natural capital, Daly details parsimoniously how this ethic is operationalized in physical terms. The system is rationally complete, and in agreement with physical laws. Other definitions may thus be superfluous, or mere glosses on the immutable thermodynamic reality.[3]
There are numerous other definitions and systems of operationalization for sustainability, and there has been competition for influence between them, with the unfortunate result that, in the minds of some observers at least, sustainability has no agreed-upon definition.
Following the Brundtland Commission's report, one of the first initiatives to bring scientific principles to the assessment of sustainability was by Swedish cancer scientist Karl-Henrik Robèrt. Robèrt coordinated a consensus process to define and operationalize sustainability. At the core of the process lies a consensus on what Robèrt came to call the natural step framework. The framework is based on a definition of sustainability, described as the system conditions of sustainability (as derived from System theory). In the natural step framework, a sustainable society does not systematically increase concentrations of substances extracted from the Earth's crust, or substances produced by society; that does not degrade the environment and in which people have the capacity to meet their needs worldwide. [4]
Ecological footprint analysis, based on the biological concept of carrying capacity, is an estimate of the amount of land area a human population, given prevailing technology, would need if the current resource consumption and pollution by the population is matched by the sustainable (renewable) resource production and waste assimilation by such a land area. The algorithms of the ecological footprint model have, on the one hand, been used in combination with the emergy methodology (S. Zhao, Z. Li and W. Li 2005), and a sustainability index has been derived from the latter. They have also been combined with an index of quality of life (Marks et al., 2006), and the outcome christened the "(Un)Happy Planet Index" (HPI) shows data for 178 nations.
One of the striking conclusions to emerge from ecological footprint analyses is that it would be necessary to have 4 or 5 back-up planets engaged in nothing but agriculture for all those alive today to live a western lifestyle.[5] The basis of footprint analysis is the IPAT Equation that, itself, can be considered a metric.
Though sustainable development has become a concept that biologists and ecologists have measured from an eco-system point of view and that the business community has measured from a perspective of energy and resource efficiencies and consumption, the discipline of anthropology is itself founded on the concept of sustainability of human groups within ecological systems. At the basis of the definition of culture is whether a human group is able to transmit its values and continue several aspects of that lifestyle for at least three generations. The measurement of culture, by anthropologists, is itself a measure of sustainability and it is also one that has been codified by international agreements and treaties like the Rio Declaration of 1992 and the United Nations Declaration on the Rights of Indigenous Peoples to maintain a cultural group's choice of lifestyles within their lands and ecosystems.
Terralingua, an organization of anthropologists and linguists working to protect biocultural diversity, with a focus on language, has devised a sert of measures with UNESCO for measuring the survivability of languages and cultures in given eco-systems.[6]
The Lempert-Nguyen indicator of sustainable development, developed in 2008 by David Lempert and Hue Nguyen is one that incorporates and integrates these cultural principles with international law.[7]
In 1997 the Global Reporting Initiative (GRI) was started as a multi-stakeholder process and independent institution whose mission has been "to develop and disseminate globally applicable Sustainability Reporting Guidelines". The GRI uses ecological footprint analysis and became independent in 2002. It is an official collaborating centre of the United Nations Environment Programme (UNEP) and during the tenure of Kofi Annan, it cooperated with the UN Secretary-General’s Global Compact.
In 1956 Dr. H.T. Odum of the University of Florida coined the term Emergy and devised the accounting system of embodied energy. In 1997, systems ecologists M.T.Brown and S.Ulgiati published their formulation of a quantitative sustainability index (SI) as a ratio of the emergy (spelled with an "m", i.e. "embodied energy", not simply "energy") yield ratio (EYR) to the environmental loading ratio (ELR). Brown and Ulgiati also called the sustainability index the "Emergy Sustainability Index" (ESI), "an index that accounts for yield, renewability, and environmental load. It is the incremental emergy yield compared to the environmental load".[8]
Writers like Leone (2005) and Yi et al. have also recently suggested that the emergy sustainability index has significant utility. In particular, Leone notes that while the GRI measures behavior, it fails to calculate supply constraints the emergy methodology aims to calculate.
In 2004, a joint initiative of the Yale Center for Environmental Law and Policy (YCELP) and the Center for International Earth Science Information Network (CIESIN) of Columbia University, in collaboration with the World Economic Forum and the Directorate-General Joint Research Centre (European Commission) also attempted to construct an Environmental Sustainability Index (ESI).[10] This was formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum (WEF) on 28 January 2005. The report on this index made a comparison of the WEF ESI to other sustainability indicators such as the Ecological footprint Index. However there was no mention of the emergy sustainability index.
In 1996 the International Institute for Sustainable Development developed a Sample Policy Framework, which proposed that a sustainability index "...would give decision-makers tools to rate policies and programs against each other" (1996, p. 9). Ravi Jain (2005) [11] argued that, "The ability to analyze different alternatives or to assess progress towards sustainability will then depend on establishing measurable entities or metrics used for sustainability."
The International Institute for Sustainable Development has produced a "Dashboard of Sustainability", "a free, non-commercial software package that illustrates the complex relationships among economic, social and environmental issues". This is based on Sustainable Development Indicators Prepared for the United Nations Division for Sustainable Development (UN-DSD)DECEMBER 2005.
The World Business Council for Sustainable Development, founded in 1995, has formulated the business case for sustainable development and argues that "sustainable development is good for business and business is good for sustainable development". This view is also maintained by proponents of the concept of industrial ecology. The theory of industrial ecology declares that industry should be viewed as a series of interlocking man-made ecosystems interfacing with the natural global ecosystem.
According to some economists, it is possible for the concepts of sustainable development and competitiveness to merge if enacted wisely, so that there is not an inevitable trade-off.[12] This merger is motivated by the following six observations (Hargroves & Smith 2005):
Life Cycle Assessment is a "composite measure of sustainability." It analyses the environmental performance of products and services through all phases of their life cycle: extracting and processing raw materials; manufacturing, transportation and distribution; use, re-use, maintenance; recycling, and final disposal.[13]
Building on the work of the World Business Council for Sustainable Development, businesses began to see the needs of environmental and social systems as opportunities for business development and, ultimately, profit. This approach has manifested itself in two key areas of strategic intent: Sustainable Innovation and Bottom of the Pyramid business strategies. Now, as businesses have begun the shift toward sustainable enterprise, many business schools are leading the research and education of the next generation of business leaders. Some key players are:
This report, commissioned by former UK Chancellor of the Exchequer Gordon Brown (and UK Prime Minister, 2007–2010), on the economics of global climate change, estimated that 1% of GDP now must be invested to save 20% of GDP, because of failures by most global market sectors to integrate sustainability in the metrics they have governed with. The main points of the Review are described in an article by Godard.[14] This article also brings a discussion about the report that goes beyond the well-publicised results.
Another application of the term sustainability has been in the Sustainable Livelihoods Approach, developed from conceptual work by Amartya Sen, and the UK's Institute for Development Studies http://www.ids.ac.uk. This was championed by the UK's Department for International Development(DFID), UNDP, Food and Agriculture Organization (FAO) as well as NGOs such as CARE, OXFAM and the African Institute for Community-Driven Development, Khanya-aicdd http://www.khanya-aicdd.org. Key concepts include the Sustainable Livelihoods (SL) Framework, a holistic way of understanding livelihoods, the SL principles, as well as six governance issues developed by Khanya-aicdd.[15] A wide range of information resources on Sustainable Livelihoods Approaches can be found at Livelihoods Connect http://www.livelihoods.org
Some analysts view this measure with caution because they believe that it has a tendency to take one part of the footprint analysis and IPAT equation (productivity) and to focus on the sustainability of economic returns to an economic sector rather than on the sustainability of the entire population or culture.
The Food and Agriculture Organisation (FAO) has identified considerations for technical cooperation that affect three types of sustainability:
Some ecologists have emphasised a fourth type of sustainability:
Sustainability is obviously relevant to international development projects. A definition of development sustainability is "the continuation of benefits after major assistance from the donor has been completed" (Australian Agency for International Development 2000). Ensuring that development projects are sustainable can reduce the likelihood of them collapsing after they have just finished; it also reduces the financial cost of development projects and the subsequent social problems, such as dependence of the stakeholders on external donors and their resources. All development assistance, apart from temporary emergency and humanitarian relief efforts, should be designed and implemented with the aim of achieving sustainable benefits. There are ten key factors that influence development sustainability.
The definition of sustainability as "the continuation of benefits after major assistance from the donor has been completed" (Australian Agency for International Development 2000) is echoed by other definitions (World Bank, USAID). The concept has however evolved as it has become of interest to non grant-making institutions. Sustainability in development refers to processes and relative increases in local capacity and performance while foreign assistance decreases or shifts (not necessarily disappears). The objective of sustainable development is open to various interpretations.[16]